teacher-game-students.jpg

As treasure troves of culture and knowledge, museums hold untold potential not just as destinations for school field trips, but as extensions of the classroom. In particular, when museums offer educational resources for teachers, they greatly enrich the curriculum and provide students with a deeper, more contextual understanding of their subjects. As well, resources based on games and stories can tap into the vast potential for interactive learning to make a lasting impact on each student’s educational experience.

 

Museums as Educational Partners

 

Enriching the Curriculum

Museums possess a wealth of artifacts and exhibits that can bring textbooks to life. By offering access to curated educational resources about those exhibitions, museums can help teachers provide a more nuanced view of complex subjects, from history to science. For instance, history teachers can use online museum archives to show actual artifacts from the period they’re teaching, allowing students to make a tangible connection with the past.

 

Tailoring Learning

Teachers can often feel constrained by the rigidity of standardized curricula. Museum resources can offer the flexibility to tailor learning experiences to the needs and interests of their class. For example, science teachers might incorporate virtual tours of natural history museums to complement a unit on evolution or biodiversity, giving students a glimpse of the diversity of life forms far outside of the student’s own location and the adaptations of those life forms to their environment.

 

The Power of Game-Based Resources

 

Engagement Through Interactivity

Game-based learning harnesses the engaging power of play to encourage active learning and problem-solving. When museums offer resources in the form of games, they capture the attention of students who might otherwise be disengaged. This method can be particularly effective for complex STEM topics, which often benefit from interactive models and simulations that can make challenging concepts more accessible – even allowing the introduction of higher level thinking at a lower grade level.

 

Learning by Doing

Educational theorists have long touted the benefits of experiential learning—learning by doing. Games and interactive simulations offered by museums can provide hands-on experiences in a virtual format. For example, an online game that allows students to simulate archaeological digs can teach them about the scientific process of uncovering and analyzing historical artifacts.

 

Accessibility and Reach

In an age where technology pervades every aspect of life, digital resources can overcome the limitations of geography. Museums that provide online game-based resources for teachers to use in their classroom can make their collections and expertise available to a much broader audience. A small rural school, miles from the nearest museum, can still benefit from high-quality educational games developed by leading institutions.

 

Examples of Game-Based Museum Resources for Schools

 

  1. History Mystery Games – Museums can create online games where students analyze primary source documents and artifacts to solve historical mysteries.

  

  1. Virtual Physics Labs – Science museums can offer interactive simulations where students conduct virtual experiments to learn about physics principles.

  

  1. Eco-System Simulators – Natural history museums can develop games where students manage virtual ecosystems, learning about environmental science and biology.

  

  1. Math Puzzles from Art – Art museums can offer pattern and geometry games based on their art collections, integrating math and art education into an interdisciplinary approach and allowing students who excel in each subject see the value in both.

 

  1. Language Learning Through Exploration – Language museums can create exploration games where students practice language skills while learning about the history and culture of the language.

 

  1. Cultural Role-Playing Games – Anthropology museums can provide role-playing games where students take on roles to uncover information through the stories of different cultures, promoting understanding and empathy.

 

  1. Interactive Storytelling – Literary museums can develop interactive narratives that allow students to engage with literature in a choose-your-own-adventure format.

 

  1. Astronomy Quests – Science centers with planetariums can create quest-based games that teach students about astronomy and space exploration.

 

  1. Engineering Challenges – Technology museums can offer design and build challenges that give students a taste of engineering problem-solving.

 

  1. Virtual Museum Building – Students can learn about curation and exhibit design by creating their own virtual museum exhibits.

 

As museums continue to evolve, their role in education can expand through the provision of game-based resources for teachers. These resources harness the potential for interactive, engaging learning, making subjects come alive for students in diverse and innovative ways. By investing in these resources, museums not only fulfill their educational missions but also ensure that their treasures have a lasting impact on the learners of today and the leaders of tomorrow.

 


 

Guardian Adventures provides consulting and program development for museum and science centers, summer campsamusement & attraction industries, and more.


STEM_Adventure5-1280x852.jpg

Science centers and children’s museums are on a constant quest to engage and inspire individuals of all ages to be curious and explore the world around them. However, not everyone absorbs information the same way—some visitors need more dynamic, interactive experiences to grasp complex subjects. They need an interactive game for motivation or a story for context… and even better: A role to play in that story. This is where games and Live Action Role-Playing (LARPs) can offer a new dimension for educational immersion. 

 

Why Games and LARPs Are Effective Tools

 

Interactive Learning

Games and LARPs (also called EduLARPs) can turn abstract theories and ideas into something more tactile and experiential. They promote interactive learning, which research shows increases retention and understanding1. The game environment can engage the emotions of a learner which encourages them to persevere through the learning process. Simply studying a topic does have it’s place when the topic requires significant memorization. But it’s terribly difficult to get excited about memorization.

 

Catering to Different Learning Styles

Different people have different learning styles—visual, auditory, reading/writing, and kinesthetic. Games and LARPs are designed for multiple learning styles and can accommodate different lived experiences, making the educational process more accessible and culturally inclusive2. This is especially true for learners who love video games or movies because the best games involve the use of storytelling.

 

Encouragement of STEM

By embedding scientific, technological, engineering, and mathematical (STEM) principles into a game or LARP scenario, participants can understand these concepts in an applied setting, boosting their interest in STEM fields3. It’s also possible to use these methods to introduce higher level scientific concepts to younger children. There is a limitation, of course, in that metaphors and fantastical stories are sometimes the vehicle for education. So it is important that the teacher helps the students understand that these aspects may not fully encompass the complexity of the scientific concepts. But if the learner is truly inspired, they may pursue more traditional learning in the future.

 

Five Examples of Games and LARPs in Educational Settings

 

1. Phantom Physics: Quest for the Hidden Particle

This is an exciting and interactive 30 minute LARP mystery that teachers can run in their classroom or over Zoom about Particle Physics for ages 8-10. Created with materials from CERN with permission

 

2. Crack the DNA Code

You’ve spotted some products in a shop in New York City. You have a hunch that some of them are from endangered animals. The store owner claims the products are all legal. It’s your job to find out which products were made from endangered animals. It’s your turn to be a DNA detective!

 

3. Mathlete Tournament

A competitive game where teams solve math problems to “score goals,” turning abstract equations into a tangible, goal-oriented activity.

 

4. Astronaut Training Camp

A LARP that mimics the challenges and exercises astronauts go through, embedding physics and engineering concepts within the challenges.

 

5. Elixir of Life STEM Adventure

In this course, instructors learn how to run an immersive LARP where your guests are thrust into a crime-solving adventure set aboard a cruise ship in the year 2070. This LARP requires more equipment resources than are typical for a classroom.

 

As the pinnacle of Informal Learning, science centers and children’s museums can provides a wide array of benefits to their learners when they integrate LARPs and games into their displays or experiences. They improve interactive engagement, apply to multiple learning styles, and encourage an interest in STEM fields. These institutions are already renowned for making science interesting and they have a much wider leeway than schools for making science not just informative, but also fun and accessible.

 

Footnotes

 

1: Kapp, Karl M. “The Gamification of Learning and Instruction: Game-based Methods and Strategies for Training and Education.” Pfeiffer, 2012.

 

2: Coffield, F., Moseley, D., Hall, E., & Ecclestone, K. “Learning styles and pedagogy in post-16 learning: A systematic and critical review.” Learning and Skills Research Centre, 2004.

 

3: Honey, Margaret A., and Margaret Hilton, eds. “Learning science through computer games and simulations.” National Academies Press, 2011.

 


 

Guardian Adventures provides consulting and program development for museum and science centers, summer campsamusement & attraction industries, and more.


cms_2-1-1080x675.jpg

The world of science is vast and intriguing, but is often seen as a subject that should be limited according to grade level. However, just like teaching a child to swim in the shallow part of a pool before diving into the deep end, we can introduce elementary school students to the depths of higher-level science if we use the right techniques. Early exposure to advanced concepts not only lays a stronger foundation for future learning but also ignites an innate curiosity that can last a lifetime.

Here are just a few benefits of introducing advanced science concepts early:

  • Broadened Horizons and Deeper Curiosity: Studies have shown that children are natural-born scientists, innately curious and constantly exploring the world around them1. By introducing higher-level science concepts early, we’re essentially feeding this curiosity, paving the way for more profound understanding and exploration in later years.
  • Enhanced Cognitive Skills: Complex scientific ideas challenge young minds, pushing them to think critically and analytically2. This not only prepares them for rigorous academic challenges in the future but also for problem-solving in everyday life.
  • Preparedness for the Future: With the rapid advancement in science and technology, the next generation will be at the forefront of solving global challenges. Early immersion in advanced science provides them with the knowledge and mindset needed to face these challenges head-on.

So now that we know that this is a good idea… the question remains about how we introduce these concepts.  Here are few ideas to get you started:

 

1. Using Metaphors to Explain Complex Ideas

Metaphors are powerful tools that draw parallels between the familiar (what the student already knows) and the unfamiliar (what they do not know), making advanced concepts more accessible. The beauty of metaphors lies in their ability to transform abstract and sometimes intimidating concepts into relatable and digestible information. By connecting the known with the unknown, metaphors serve as bridges to understanding. Here are some examples to highlight using metaphors in explaining complex scientific ideas to elementary school children:

    • Cells as Cities: The cell can be likened to a bustling city. The nucleus, which contains the cell’s genetic material, is like the city hall or control center. The mitochondria, responsible for energy production, can be seen as power plants. The endoplasmic reticulum, involved in protein and lipid synthesis, parallels factories producing goods. This metaphor allows students to visualize the intricate workings of a cell in a context they can more easily understand1
    • Electrical Circuits as Water Flow: Explaining electrical circuits can be daunting for young students. However, if you compare it to water flowing through pipes, it becomes clearer. Batteries can be thought of as water pumps, pushing water (or current) through the pipes (or wires). Resistors can be likened to narrow parts of the pipe where water flow (or current) slows down.
    • Gravity as a Ball on a Trampoline: To understand the concept of gravity and its effect on space-time, think of a trampoline. When a heavy ball (representing a planet or star) is placed in the middle of the trampoline, it creates a dip or curve. Smaller balls (representing smaller celestial bodies or objects) will roll towards the heavier ball, mimicking the gravitational pull2
    • Enzymes as Locks and Keys: Enzymes, which facilitate biochemical reactions, can be hard to visualize. However, by likening them to locks and their substrates as keys, students can grasp how only the right key (substrate) fits into a lock (enzyme) to unlock (or catalyze) a reaction3
    • Particle Physics Quest for the Hidden Particle: This is a Zoom or in-classroom interactive adventure that teachers can run for ages 8-10 that explores particle physics within an exciting mystery.

Note: Metaphors (as well as Games and Stories) are NOT going to hold up under deeper scrutiny and certainly won’t be applicable as you get into more details of how the science works.  It’s also important to know that they can be misused to spread false information if there are not transparent and regular reminders that the content is simplified and not to be taken out of context or mistaken for deeper knowledge. 

 

2. Engaging with Games

Games provide hands-on experience, allowing kids to learn by doing3. For example, introducing the concept of physics through marble races can explore ideas related to motion, energy, and force. Games also offer immediate feedback, which is vital for learning. If a child makes a mistake, they can understand what went wrong right away and try again, which leads to better retention of the concept. Educational games can be tailored to include cultural elements (like stories, below) that make the scientific content more relatable to diverse audiences, breaking down barriers that might discourage some children from taking an interest in science. 

Creating interactive adventures like EduLARPs which utilize autonomy and a sense of progress can motivate learners to do their own investigation outside of the formal learning environment in order to excel at the game. Such tangible experiences are not only exciting and engaging, they can assist with understanding of higher level concepts and inspire more curiosity on the topic.

 

3. Narrating Through Stories

Stories captivate minds of all ages. By weaving scientific concepts into tales, children can grasp ideas within a context they understand. Take the water cycle, for example. Narrating it as a journey of a water droplet traveling from a river to the sky and back again not only simplifies the process but also makes it memorable. Just like games, cultural elements or references can make the subject more interesting as well as applicable to the students. Exploring the stories of scientists who are people of color or who had a disability can reach kids who have that same lived experience in a way that other stories might not. 

 

When stories are combined with games as well as cultural references, you have a powerful triumvirate for learning. You can reach the students by engaging their own interests and meeting them where they are in their preferred learning style. If you add a debrief at the end of the game, story, or metaphor exploration, you will dramatically improve the learning objectives. And when this happens, motivation takes over for learning science concepts that can be far beyond what is considered “grade level”. The outcome can be inspiring kids to see themselves as scientists, not just now, but in the future as a career path. 

 

Footnotes

1. Gopnik, A., Meltzoff, A. N., & Kuhl, P. K. (1999). The scientist in the crib: Minds, brains, and how children learn. William Morrow & Co.

2. Zosh, J. M., Hirsh-Pasek, K., & Golinkoff, R. M. (2015). O the places we will go: The benefits of immersive storytelling for the development of children’s scientific thinking. Frontiers in psychology, 6, 634.

3. Hassinger-Das, B., Toub, T. S., Hirsh-Pasek, K., & Golinkoff, R. M. (2017). A matter of principle: Applying language science to the classroom and beyond. Translational issues in psychological science, 3(1), 5.

 


 

Guardian Adventures provides consulting and program development for museum and science centers, summer campsamusement & attraction industries, and more.


Skip to content